
A Belief-Driven Method for Discovering Unexpected Patterns

Balaji Padmanabhan
Department of Information Systems
Leonard N. Stern School of Business

New York University
bpadmana@stern.nyu.edu

Alexander Tuzhilin1

Computer Science Department
Columbia University

tuzhilin@cs.columbia.edu

1 On sabbatical leave from NYU.
Copyright  1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Abstract
Several pattern discovery methods proposed in the data
mining literature have the drawbacks that they discover
too many obvious or irrelevant patterns and that they do
not leverage to a full extent valuable prior domain
knowledge that decision makers have. In this paper we
propose a new method of discovery that addresses these
drawbacks. In particular we propose a new method of
discovering unexpected patterns that takes into
consideration prior background knowledge of decision
makers. This prior knowledge constitutes a set of
expectations or beliefs about the problem domain. Our
proposed method of discovering unexpected patterns uses
these beliefs to seed the search for patterns in data that
contradict the beliefs. To evaluate the practicality of our
approach, we applied our algorithm to consumer purchase
data from a major market research company and to web
logfile data tracked at an academic Web site and present
our findings in the paper.

1. Introduction
The field of knowledge discovery in databases (data
mining) has been defined in [FPS96] as the non-trivial
process of identifying valid, novel, potentially useful, and
ultimately understandable patterns from data. However,
most of the work in the KDD field focuses on the validity
aspect, and the other two aspects, novelty and usefulness,
were studied to a lesser degree. This is unfortunate because
it has been observed both by researchers [FPM91,
KMR+94,BMU+97,ST95,ST96a,LH96] and practitioners
[S97,F97] that many existing tools generate a large number
of valid but obvious or irrelevant patterns. To address this
issue, some researchers have studied the discovery of novel
[ST95,ST96a,LH96,LHC97,PT97a] and useful [PSM94,
ST95, ST96a,AT97] patterns.

In this paper, we continue the former stream of research
and focus on the discovery of unexpected patterns.
Unexpectedness of a rule relative to a belief system has
been considered before in [ST95,ST96a,LH96,LHC97,
PT97a]. In [ST95,ST96a] “unexpectedness” of a rule is
defined relative to a system of user-defined beliefs. A rule
is considered to be “interesting” if it affects the degrees of
beliefs. Therefore, unexpectedness is defined in
probabilistic terms in [ST95, ST96a]. Liu and Hsu take a

different approach to defining unexpectedness in [LH96].
In particular, [LH96] captures a measure of rule “distance”
and is based on a syntactic comparison between a rule and
a belief. In [LH96], a rule and a belief are “different” if
either the consequents of the rule and the belief are
“similar” but the antecedents are “far apart” or vice versa,
where “similarity” and “difference” are defined
syntactically based on the structure of the rules. In
addition, [LHC97] proposes a method in which users can
specify their beliefs by using "generalized impressions"
that are easier for the user to specify than specific beliefs.
However the discovery method again is based on syntactic
comparisons of rules and beliefs. This does not capture the
concept of “unexpectedness” in terms of logical
contradiction of rules and beliefs as argued in [PT97a] to
be better.

In [PT97a] we proposed a new definition of
unexpectedness in terms of a logical contradiction of a rule
and a belief. In this paper, we take this approach and
formally present an algorithm for discovering unexpected
patterns. We also test this algorithm on data provided to us
by a major market research company and on Web logfile
data gathered at an academic website and present our
findings. We also demonstrate that our method provides a
simple, yet effective way to discovering interesting
patterns in the data.

In this paper, we focus only on the discovery of
unexpected patterns given an initial set of beliefs. We do
not address the issue of how to build a "good" set of
beliefs. We assume that it can be generated using methods
described in [ST96b], such as elicitation of beliefs from
the domain expert, learning them from data, and
refinement of existing beliefs using newly discovered
patterns. A similar issue of how to specify an initial set of
beliefs has also been addressed in [LHC97].

2. Unexpectedness of a Rule
In order to define the concept of unexpectedness, we first
present some preliminaries. We consider rules and beliefs
of the form X → A, where X and A are conjunctions of
literals (i.e., either atomic formulas of first-order logic or

negations of atomic formulas). We keep this definition
general and do not impose restrictions of the structures of
atomic formulas that can appear in literals of X and A. We
also associate with the rule some measure of its statistical
“strength” [PS91], such as “confidence” and “support”
[AIS93]. We say that a rule holds on a dataset if the
“strength” of the rule is greater than a user-defined
threshold value.

We also make an assumption of monotonicity of beliefs.
In particular, if we have a belief Y→B that we expect to
hold on a dataset D, then the belief will also be expected to
hold on any “statistically large”2 subset of D. If we have a
non-monotonic belief (that we expect not to hold for some
subset of the data), we incorporate our knowledge of why
we do not expect the belief to hold on the subset into the
belief, thereby making the belief more specific (as shown
in [PT97b]). We can do this iteratively until we have a set
of monotonic beliefs.3 Given these preliminary concepts,
we define unexpectedness of a rule.

Definition. The rule A → B is unexpected with respect to
the belief X → Y on the dataset D if the following
conditions hold:

(a) B AND Y |= FALSE. This condition states that B
and Y logically contradict each other.
(b) A AND X holds on a statistically large2 subset of
tuples in D. We use the term “intersection of a rule
with respect to a belief” to refer to this subset. This
intersection defines the subset of tuples in D in which
the belief and the rule are both “applicable” in the sense
that the antecedents of the belief and the rule are both
true on all the tuples in this subset.
(c) The rule A, X → B holds. Since condition (a)
constrains B and Y to logically contradict each other, it
follows that the rule A, X → ¬Y holds. �

We believe that this definition captures the spirit of
“unexpectedness” for the following reasons:
(1) The heads of the rule and the belief are such that they
logically contradict each other. Therefore in any tuple
where the belief and the rule are both “applicable,” if the
rule holds on this tuple, the belief cannot hold and vice-
versa.
(2) Since both a rule and a belief hold statistically, it is
inappropriate to label a rule “unexpected” if the
intersection of the contradicting rule and the belief is very
small. Hence we impose the condition that the intersection
of the belief and the rule should be statistically large.
Within this statistically large intersection, we would expect

2 In this paper, we use a user-specified support threshold value to
determine if the subset is large enough.
3 Converting non-monotonic beliefs to monotonic beliefs can be
automated by letting the user specify non-monotonic beliefs with
exceptions. Then the system automatically converts these to a set
of monotonic beliefs.

our belief to hold because of the monotonicity assumption.
However if the rule holds in this intersection, the belief
cannot hold because the heads of the rule and belief
logically contradict each other. Hence the expectation that
the belief should hold on this statistically large subset is
contradicted. We next present an algorithm, which is an
extension of standard association rule generating
algorithms [AMS+95] for finding unexpected rules.

3. Discovery of Unexpected Rules
In this section we present an algorithm for discovering
unexpected rules. The rules we consider are of the form
body → head, where body is a conjunction of atomic
conditions of the form attribute op value and head is a
single atomic condition of the form attribute op value,
where op ∈ {≥, ≤, =}. This definition extends the structure
of association rules [AMS+95] by considering discrete
domains and conditions involving comparison operators ≥
and ≤. We consider these extensions since in many
applications, such as the Web logfile application, rules and
beliefs involve these additional operators. We further
follow the approach taken in [AMS+95] and discover
unexpected rules that satisfy user-specified minimum
support and confidence4 requirements.

We note that some discrete attributes in the domain
may be unordered (e.g. "Country"). When an unordered
attribute is part of a condition, we restrict the operator in
that condition to be "=" (we disallow conditions such as
"country > Brazil", since country is an unordered
attribute).

3.1 Overview of the Discovery Strategy
Consider a belief X → Y and a rule A → B, where both X
and A are conjunctions of atomic conditions and both Y and
B are single atomic conditions. It follows from the
definition of unexpectedness in Section 2 that if a rule A →
B is “unexpected” with respect to the belief X → Y, then
the rule X, A → B also holds. We propose the discovery
algorithm ZoomUR (“Zoom to Unexpected Rules”) that
consists of two parts: ZoominUR and ZoomoutUR. Given
a belief X → Y, algorithm ZoomUR first discovers (in
ZoominUR) all rules (satisfying threshold support and
confidence requirements) of the form X, A → B, such that
B contradicts the head of the belief. We then consider (in
ZoomoutUR) other more general and potentially
unexpected rules of the form X’, A → B, where X’ ⊂ X.

4 Rule body → head holds in a dataset with confidence c if c% of
the transactions containing body also contain head; the rule has
support s if s% of transactions contain body and head [AIS93].
5 Since we consider attributes with a finite number of discrete
levels in this paper, the number of conditions involving these
levels are also finite.

The rules that ZoominUR discovers are “refinements” to
the beliefs such that the beliefs are contradicted. The rules
that ZoomoutUR discovers are not refinements, but more
general rules that satisfy the conditions of unexpectedness.
For example, if a belief is that “professional→ weekend”
(professionals tend to shop more on weekends than on
weekdays), ZoominUR may discover a refinement such as
“professional, december → weekday” (in December,
professionals shop more on weekdays than on weekends).
ZoomoutUR may then discover a more general rule
“december→weekday”, totally different from the belief
“professional→ weekend”.

3.2 Algorithm ZoominUR
Algorithm ZoominUR is based on algorithm Apriori's
ideas [AMS+95] of generating association rules from
itemsets in an incremental manner. In this paper we use the
term "itemset" to refer to a conjunction of atomic
conditions, each of the form attribute op value where op ∈
{≥, ≤, =}. An itemset is said to be large if the percentage of
transactions that satisfy the conjunction of conditions
exceeds the user-specified minimum support level. There
are two main extensions to Apriori that we make in
ZoominUR: (1) ZoominUR starts with a set of initial
beliefs to seed the search for unexpected rules. This is
similar in spirit to the work of [SVA97] where itemset
constraints are used to focus the search. (2) We incorporate
comparisons since in many applications some rules involve
these operators. Before presenting ZoominUR, we first
explain some preliminaries.

Consider the belief X → Y, where X and Y are as
defined in Section 3.1. We use the term "CONTR(Y)" to
refer to the set of atomic conditions of the form attribute
op value that contradict Y, where op ∈ {≥, ≤, =}. Assume
that the head of the belief is a op val, where a is an
attribute in the domain. Further assume that v1, v2,...,vk are
the set of unique discrete values (sorted in ascending order
if a is ordered) that the attribute a takes on in D.
CONTR(Y) is generated as follows:

(1) If the head of the belief is of the form "a ≥ val":
a) Any condition of the form "a ≤ vp"∈ CONTR(Y) if vp ∈

{v1,v2,...vk} and vp < val; (e.g. the head "month ≥ 10" is
contradicted by "month ≤ x", where x could be from
{1,2,...,9})

a) Any condition of the form "a = vp"∈ CONTR(Y) if vp ∈
{v1,v2,...vk} and vp < val;

(2) If the head of the belief is of the form "a ≤ val":
a) Any condition of the form "a ≥ vp"∈ CONTR(Y) if vp ∈

{v1,v2,...vk} and vp > val;
a) Any condition of the form "a = vp"∈ CONTR(Y) if vp ∈

{v1,v2,...vk} and vp > val;

(3) If the head of the belief is of the form "a = val":
a) If a is an ordered attribute, "a ≥ vp"∈ CONTR(Y) if vp ∈

{v1,v2,...vk} and vp > val;
a) If a is an ordered attribute, "a ≤ vp"∈ CONTR(Y) if vp ∈

{v1,v2,...vk} and vp < val;
a) Any condition of the form "a = vp"∈ CONTR(Y) if vp ∈

{v1,v2,...vk} and vp ≠ val;

Since the rules discovered need to have minimum
support, we follow the method of [AMS+95] and generate
large itemsets in the first part of the algorithm. The k-th
iteration of Apriori [AMS+95] (1) generates a set, Ck, of
"candidate itemsets", whose support needs to be
determined; (2) then evaluates the support of each
candidate itemset from the dataset D and determines the
itemsets in Ck that are large. The set of large itemsets in
this iteration is Lk. [AMS+95] observes that all subsets of a
large itemset are large, which is why the process of
computing Ck from the set Lk-1 can be done efficiently.
The first iteration in Apriori starts with candidate itemsets
of cardinality 1. The second part of the algorithm generates
rules from the support values of the large itemsets. For e.g.,
let I1= {X,Y} and I2={X}. From the supports of these
itemsets, the confidence of the rule if X then Y is computed
as support(XY) / support(X). Given these preliminaries, we
describe the algorithm next.

ZoominUR algorithm is presented in Fig. 3.1. The
inputs to ZoominUR are a set of beliefs, B, and the dataset
D. For each belief X → Y, ZoominUR finds all unexpected
rules of the form X, A → C, such that C ∈ CONTR(Y) and
the rules satisfy minimum support and confidence
requirements.

For each belief X → Y, ZoominUR first generates
incrementally all large itemsets that may potentially
generate unexpected rules. Each iteration of ZoominUR
generates itemsets in the following manner. In the k-th
iteration we generate itemsets of the form {X,P,C} such
that C ∈ CONTR(Y). Observe that to determine the
confidence of the rule X, P → C, the supports of both the
itemsets {X,P,C} and {X,P} will have to be determined.
Hence in the k-th iteration of generating large itemsets, two
sets of candidate itemsets are considered for support
determination:
(1) The set Ck of candidate itemsets . Each itemset in Ck

(e.g. {X,P,C}) contains (i) the body {X} of the belief, (ii) a
condition that contradicts the head of belief, (i.e. any
condition C ∈ CONTR(Y)) and (iii) k other atomic
conditions (i.e. P is a conjunction of k atomic conditions).
(2) A set Ck' of additional candidates. Each itemset in Ck'
(e.g. {X,P}) is generated from an itemset in Ck by dropping
the contradictory condition, C.

Inputs: Beliefs Bel_Set, Dataset D, Thresholds min_support and min_conf
Outputs: For each belief, B, itemsets Items_In_UnexpRuleB

1 forall beliefs B ∈ Bel_Set {
2 C0 = { {x,body(B)} | x ∈ CONTR(head(B)) }; C0’ = {{body(B)}}; k=0
3 while (Ck != ∅) do {
4 forall candidates c ∈ Ck ∪ Ck’, compute support(c)
5 Lk = {x | x ∈ Ck ∪ Ck’, support(x) ≥ min_support }
6 k++
7 Ck = generate_new_candidates(Lk-1, B)
8 Ck’ = generate_bodies(Ck , B)
9 }
10 Let X = {x | x ∈ ∪ Li, x ⊇ a, a ∈ CONTR(head(B)) }
11 Items_In_UnexpRuleB = ∅
12 forall (x ∈ X) {
13 rule_conf = support(x)/support(x-a), where a ∈ CONTR(head(B))
14 if (rule_conf > min_conf) {
15 Items_In_UnexpRuleB = Items_In_UnexpRuleB ∪ {x}
16 Output Rule “ x - a → a “
17 }
18 }
19 }

Figure 3.1 Algorithm ZoominUR

We explain the steps of ZoominUR in Fig. 3.1 now. First,
given belief, B, the set of atomic conditions that contradict
the head of the belief, CONTR(head(B)), is computed (as
described above). Then, the first candidate itemsets
generated in C0 (step 2) will each contain the body of the
belief and a condition from CONTR(head(B)). To illustrate
this, consider an example involving only binary attributes.
For the belief x=0→y=0, the set CONTR({y=0}) consists
of a single condition {y=1}. The initial candidate sets,
therefore, are C0 = {{x=0,y=1}}, C0' = {{x=0}}.

Steps (3) through (9) in Fig. 3.1 are iterative: Steps (4)
and (5) determine the supports in dataset D for all the
candidate itemsets currently being considered and selects
the large itemsets in this set.

In step (7), function generate_new_candidates(Lk-1, B)
generates the set Ck of new candidate itemsets to be
considered in the next pass from the previously determined
set of large itemsets, Lk-1, with respect to the belief B (“x
→ y”) in the following manner:

(1) Initial condition (k=1): In the example (binary
attributes) considered above, assume that L0 = {{x=0,
y=1},{x=0}}, i.e. both initial candidates had adequate
support. Further assume that “p” is the only other attribute
(also binary) in the domain. The next set of candidates to
be considered would be C1 = { {x=0,y=1,p=0},
{x=0,y=1,p=1} }, and C1’ = { {x=0, p=0}, {x=0, p=1}}.

In general we generate C1 from L0 by adding
conditions of the form “attribute op value” to each of the
itemsets in L0. To prevent generating trivially unexpected
rules, we do not add any additional condition from
CONTR(head(B)). This process adds a finite number of
conditions efficiently because of the following reasons.
First, the attributes are assumed to have a finite number of
unique discrete values in the dataset D. Only conditions
involving these discrete values are considered. Second, a

syntactic check can ensure that zero-support itemsets are
never generated. For example, {month ≥ 10} is not added
to itemsets of the form {{month ≤ 3}, X}, while it is added
to {{month ≤ 12}, X}.

(2) Incremental generation of Ck from Lk-1 when k > 1:
This function is very similar to the apriori-gen function
described in [AMS+95]. For example, assume that for a
belief, B, "x → y", c is a condition that contradicts y and
that L1 = { {x, c, p}, {x, c, q}, {x, p}, {x, q} } . Similar to
the apriori-gen function, the next set of candidate itemsets
that contain x and c is C2 ={ {x, c, p, q} } since this is the
only itemset such that all its subsets of one less cardinality
that contain both x and c are in L1.

In general, an itemset X is in Ck if and only if for the
belief B, X contains body(B) and a condition A such that A
∈ CONTR(head(B)) and all subsets of X with one less
cardinality, containing A and body(B), are in Lk-1.

In step (8), as described previously, we would also
need the support of additional candidate itemsets in Ck' to
determine the confidence of unexpected rules that will be
generated. The function generate_bodies(Ck,B) generates
Ck' by considering each itemset in Ck and dropping the
condition that contradicts the head of the belief and adding
the resulting itemset in Ck'.

Once all large itemsets have been generated, steps (10)
to (16) of ZoominUR generate unexpected rules of the
form x, p→ a, where a∈ CONTR(head(B)), from the
supports of the large itemsets.

3.3 Algorithm ZoomoutUR
ZoomoutUR considers each unexpected rule generated by
ZoominUR and tries to determine all the other more
general rules that are unexpected.

Inputs: Beliefs Bel_Set, Dataset D, min_support, min_conf, For each belief, B, itemsets
Items_In_UnexpRuleB

1 forall beliefs B {
2 new_candidates = ∅
3 forall (x ∈ Items_In_UnexpRuleB) {
4 Let K = {(k, k')|k ⊂ x, k ⊇ x-body(B), k' = k - a, a ∈ CONTR(head(B))}
5 new_candidates = new_candidates ∪ K
6 }
7 find_support(new_candidates)
8 foreach (k,k’) ∈ new_candidates
9 consider rule: k’ → k-k’ with confidence = support(k)/support(k’)
10 if (confidence > min_conf) Output Rule “ k’ → k-k’ “
11 }
12 }

Figure 3.2. Algorithm ZoomoutUR

Given a belief X → Y and an unexpected rule X, A → B
computed by ZoominUR, ZoomoutUR tries to find more
general association rules of the form X’, A → B , where X’
⊂ X, and check if they satisfy minimum confidence
requirements. Such rules satisfy the following properties.
First, they are unexpected since the intersection6 of this
rule with the belief results in the rule X, A → B, which is
already known to hold. Second, these rules are more
general in the sense that they have at least as much support
as the rule X, A → B. Third, the itemsets {X’, A} and
{X’,A, B} are guaranteed to satisfy the minimum support
requirement (though we still have to determine their exact
support) since the itemsets {X,A} and {X,A,B} are already
known to satisfy the minimum support requirement.

We present an outline of the ZoomoutUR algorithm in
Fig. 3.2 (because of space limitation, we cannot describe it
in detail and refer the reader to the technical report
[PT97b]). For each belief B from the algorithm
ZoominUR, we have the set of all large itemsets
Items_In_UnexpRuleB (step (15) in Fig. 3.1) that contain
both body(B) and some condition a, such that a ∈
CONTR(head(B)). The general idea is to take each such
large itemset, I, and find the supports for all the subsets of I
obtained by dropping from I one or more attributes that
belonging to body(B).

4. Applications
In this section we present results from applying our
methods to two real datasets: consumer purchase data from
a market research firm and web logfile data gathered at a
major university site.

4.1 Marketing Application
We tested our algorithm on consumer purchase data from a
major market research firm. We pre-processed this data by
combining different data sets into one table describing the

6 As described in part (b) of the definition of unexpectedness in
Section 2.

purchases of carbonated beverages and containing 36
discrete attributes. These attributes pertain to the
characteristics of the purchasing transaction and the store
and demographic data about the shopper's family7. Some
demographic attributes include age and sex of the shopper,
occupation, income and the presence of children in the
family and size of the household. Some transaction-
specific attributes include type of item purchased, coupon
usage (whether the shopper used coupons to get a lower
price), availability of coupons and presence of
advertisements for the product purchased. The resulting
dataset had 87437 records, each consisting of 36 discrete
fields, the levels of which range from 2 to 12 distinct
values.

We compiled 15 beliefs about the data in this domain
that fall into three groups: (1) Usage of coupons, e.g.
“young shoppers with high income tend not to use
coupons”. (2) Purchase of diet vs. regular drinks, e.g.
“shoppers in households with children tend to purchase
regular beverages more than diet”. (3) Day of shopping,
e.g. “professionals tend to shop more on weekends than on
weekdays”. Some of these beliefs were from experts and
others were learned from data and subsequently selected by
the expert as “beliefs”. In this marketing example, all
beliefs were expressed as association rules, and ZoomUR,
therefore, generated only associations.

We generated on average 40 rules per belief (a total of
about 600 rules), many of which were interesting, not just
by definition of unexpectedness, but to experts as well.
Being able to discover some rules really interesting to
experts with more ease than having to look through
thousands of rules [BMU+97] illustrates the advantage of
our simple, yet effective approach. Some representative
examples are:
Belief: Shoppers with children tend to buy regular rather
than diet beverages (presumably because children prefer
regular to diet beverages). While, this holds in general in

7 We note that this is unnormalized data containing in one file
both transaction and demographic data.

the data, ZoominUR discovered the unexpected rule:
• When there is a large store advertisement, shoppers

with children buy diet beverages.
This is a really interesting rule to an expert, because it
indicates that under a certain condition (the presence of a
large advertisement in the store), a population that usually
bought products of one kind, buy exactly the opposite
product. If these advertisements represent a sale in diet
beverages, this rule provides evidence of the success of the
advertising campaign.
Belief: Professionals tend to shop more on weekends than
on weekdays (presumably because they are busier during
the week). It turns out that this belief by itself is "true"
(holds with high confidence in the data). However,
ZoominUR discovered some very interesting rules such as:
• In December, professionals tend to shop more on

weekdays than on weekends.
• Professionals in large households tend to shop more

on weekdays than on weekends.
Post-discovery, these rules seem to make sense, perhaps
because the holiday season in December makes
professionals shop more often on weekdays and because
large households may have shopping demands far more
often than smaller households, which could make
professionals shop more often. For this belief, ZoomoutUR
also discovered that:
• In December, shoppers in general shop more on

weekdays than on weekends.
This gives some evidence that it may not necessarily be a
"professionals in december" effect, but shoppers in general
in December shop more on weekdays. Also observe that
this rule is not just a refinement of the belief, but a much
different rule (although still unexpected).

Belief: Retired shoppers tend to use coupons for their
purchases (because they can shop with more freedom and
when coupons are available). For this belief, there was a
direct contradiction.

Since ZoomUR in this case generates association rules,
we also ran Apriori algorithm on this dataset8 and
generated over 40,000 rules, many of which were
irrelevant or obvious. However, this is not surprising since
the objective of Apriori is to generate all strong association
rules. Our experiments demonstrate that the generation of
these irrelevant or obvious rules can be avoided to a large
extent by using prior domain knowledge (expressed as
beliefs) to seed the search process.

4.2 Mining Web Logfile Data
We also tested our method on Web logfile data tracked at a
major university site. The data was collected over a period

8 In the process we extended Apriori to handle discrete rather than
binary attributes.

of 8 months from May through December 1997 and
consisted of over 280,000 hits. Some of the interesting
rules in this application involve comparison operators. For
example, temporal patterns holding during certain time
intervals need to be expressed with conditions of the form
"20 ≤ week ≤ 26" (Sep. 10 through Oct. 29 in our
example). We generated 11 beliefs about the access
patterns to pages at the site. An example of a belief is:
Belief: For all files, for all weeks, the number of hits to a
file each week is approximately equal to the file's average
weekly hits.

Note that this belief involves aggregation of the Web
logfile data. To deal with this, we created a user-defined
view on the Web logfile and introduced the following
attributes: file, week_number, file_access_cnt,
avg_access_cnt_file, stable_week. The file_access_cnt is
the number of accesses to file in the week week_number.
The avg_access_cnt_file is the average weekly access for
file in the dataset. The stable_week attribute is 1 if
file_access_cnt lies within two standard deviations around
avg_access_cnt_file and is 2(3) if file_access_cnt is higher
(lower) . The above belief can then be expressed as True
→ stable_week=1. Though this belief was true in general
(holds with 94% conf. on the view generated), ZoominUR
discovered the following unexpected rules:

• For a certain "Call for Papers" file, in the weeks from
September 10 through October 29, the weekly access
count is much higher than the average. i.e.

file = cfp_file, week_number ≥ 20, week_number ≤ 26 →
stable_week=2.

What was interesting about this rule was that it turned out
to be a Call-for-papers for the previous year and the editor
of the Journal could not understand this unusually high
activity! The file was removed from the server.

• For a certain job opening file, the weeks closest to the
deadline had unusually high activity.

file = job_file, week_number ≥ 25, week_number ≤ 30 →
stable_week=2.

This pattern is not only unexpected (relative to our belief)
but is also actionable because the administrators can expect
a large number of applications and should prepare
themselves for this. Also, this pattern can prompt the
administrators to examine IP domains that do not appear in
the Web log accesses and target them in some manner.

We would like to make the following observations
based on our experiments with the Web application. First,
as the examples show, we need to incorporate comparisons
since many of the interesting patterns are expressed in
these terms. Second, the raw web access log data has very
few fields, such as IP_Address, File_Accessed, and
Time_of_Access. Without beliefs it would be extremely
difficult to discover relevant patterns from this "raw" data.

Beliefs provide valuable domain knowledge that results in
the creation of several user-defined views and also drive
the discovery process.

5. Conclusions
In this paper, we presented an algorithm for the discovery
of unexpected patterns based on our definition of
unexpectedness proposed in [PT97a]. This algorithm uses a
set of user-defined beliefs to seed the search for the
patterns that are unexpected relative to these beliefs. We
tested our algorithm on two "real-world" data sets and
discovered many interesting patterns in both data sets.

These experiments demonstrated two things. First,
user-defined beliefs can drastically reduce the number of
irrelevant and obvious patterns found during the discovery
process and help focus on the discovery of unexpected
patterns. Second, user-defined beliefs are crucial for the
discovery process in some applications, such as Weblog
applications. In these applications, important patterns are
often expressed in terms of the user-defined vocabulary
[DT93] and beliefs provide the means for identifying this
vocabulary and driving the discovery processes.

As explained in the introduction, we do not describe
how to generate an initial system of beliefs. To generate
such beliefs, we use the methods described in [ST96b].
However, more work needs to be done to extend the belief
generation methods considered in [ST96b]. In the future,
we plan to work on such extensions. We are also working
on incorporating predicates and aggregations into the
beliefs and on using them in the discovery processes.

References
[AIS93] Agrawal, R., Imielinski, T. and Swami, A., 1993.
Mining Association Rules Between Sets of Items in Large
Databases. In Proc. of the ACM SIGMOD Conference on
Management of Data, pp. 207-216.
[AMS+95] Agrawal, R., Mannila, H., Srikant, R.,
Toivonen, H. and Verkamo,A.I., 1995. Fast Discovery of
Association Rules. In Fayyad, U.M., Piatetsky-Shapiro, G.,
Smyth, P., and Uthurusamy, R. eds., Advances in
Knowledge Discovery and Data Mining. AAAI Press.
[AT97] Adomavicius, G., and Tuzhilin, A., 1997.
Discovery of Actionable Patterns in Databases: The Action
Hierarchy Approach. In Proc. of the Third Intl. Conference
on Knowledge Discovery and Data Mining (KDD 97).

[BMU+97] Brin, S., Motwani, R., Ullman, J.D., and Tsur,
S., 1997. Dynamic Itemset Counting and Implication Rules
for Market Basket Data. Procs. ACM SIGMOD Int. Conf.
on Mgmt. of Data, pp.255-264.
[DT93] Dhar, V., and Tuzhilin, A., 1993. Abstract-Driven
Pattern Discovery in Databases. IEEE Transactions on
Knowledge and Data Engineering, December 1993.
[F97] Forbes Magazine, Sep. 8, 1997. Believe in yourself,

believe in the merchandise, pp.118-124.
[FPM91] Frawley, W.J., Piatetsky-Shapiro, G. and
Matheus, C.J., 1991. Knowledge Discovery in Databases:
An Overview. In Piatetsky-Shapiro, G. and Frawley, W.J.
eds., Know. Disc. in Databases. AAAI/MIT Press, 1991.
[FPS96] Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.,
1996. From Data Mining to Knowledge Discovery: An
Overview. In Fayyad, U.M.,Piatetsky-Shapiro, G., Smyth,
P., and Uthurusamy, R. eds., Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press.
[KMR+94] Klemettinen, M., Mannila, H., Ronkainen, P.,
Toivonen, H. and Verkamo, A.I., 1994. Finding Interesting
Rules from Large Sets of Discovered Association Rules. In
Proc. of the Third International Conference on
Information and Knowledge Management, pp. 401-407.
[LH96] Liu, B. and Hsu, W., 1996. Post-Analysis of
Learned Rules. In Proc. of the Thirteenth National Conf.
on Artificial Intelligence (AAAI ’96), pp. 828-834.
[LHC97] Liu, B., Hsu, W. and Chen, S, 1997. Using
General Impressions to Analyze Discovered Classification
Rules. In Proc. of the Third Intl. Conf. on Knowledge
Discovery and Data Mining (KDD 97), pp. 31-36.
[PS91] Piatetsky-Shapiro,G.,1991. Discovery,Analysis and
Presentation of Strong Rules. In Piatetsky-Shapiro and
Frawley, eds.,Know. Disc. in Databases.AAAI/MIT Press.
[PSM94] Piatetsky-Shapiro, G. and Matheus, C.J., 1994.
The Interestingness of Deviations. In Proc. of AAAI-94
Workshop on Know. Discovery in Databases, pp. 25-36.
[PT97a] Padmanabhan, B. and Tuzhilin, A., 1997. On the
Discovery of Unexpected Rules in Data Mining
Applications. In Procs. of the Workshop on Information
Technology and Systems (WITS '97), pp. 81-90.
[PT97b] Padmanabhan, B. and Tuzhilin, A., 1997.
Unexpectedness as a Measure of Interestingness in
Knowledge Discovery. Working Paper #IS-97-6, Dept. of
Information Systems, Stern School of Business, NYU.
[S97] Stedman, C., 1997. Data Mining for Fool's Gold.
Computerworld, Vol. 31,No. 48, Dec. 1997.
[ST95] Silberschatz, A. and Tuzhilin, A., 1995. On
Subjective Measures of Interestingness in Knowledge
Discovery. In Proc. of the First International Conference
on Knowledge Discovery and Data Mining, pp. 275-281.
[ST96a] Silberschatz, A. and Tuzhilin, A., 1996. What
Makes Patterns Interesting in Knowledge Discovery
Systems. IEEE Trans. on Know. and Data Engineering.
Spec. Issue on Data Mining, v.5, no.6, pp. 970-974.
[ST96b] Silberschatz, A. and Tuzhilin, A., 1996. A Belief-
Driven Discovery Framework Based on Data Monitoring
and Triggering. Working Paper #IS-96-26, Dept. of
Information Systems, Stern School of Business, NYU.
[SVA97] Srikant, R., Vu, Q. and Agrawal, R. Mining
Association Rules with Item Constraints. In Proc. of the
Third International Conference on Knowledge Discovery
and Data Mining (KDD 97), pp. 67-73.

